Isoperimetric Inequalities for Cartesian Products of Graphs
نویسندگان
چکیده
We give a characterization for isoperimetric invariants, including the Cheeger constant and the isoperimetric number of a graph. This leads to an isoperimetric inequality for the cartesian products of graphs.
منابع مشابه
Edge-Isoperimetric Problems for Cartesian Powers of Regular Graphs
We consider an edge-isoperimetric problem (EIP) on the cartesian powers of graphs. One of our objectives is to extend the list of graphs for whose cartesian powers the lexicographic order provides nested solutions for the EIP. We present several new classes of such graphs that include as special cases all presently known graphs with this property. Our new results are applied to derive best poss...
متن کاملRandom Walks on Infinite Graphs and Groups — a Survey on Selected Topics
Contents 1. Introduction 2 2. Basic definitions and preliminaries 3 A. Adaptedness to the graph structure 4 B. Reversible Markov chains 4 C. Random walks on groups 5 D. Group-invariant random walks on graphs 6 E. Harmonic and superharmonic functions 6 3. Spectral radius, amenability and law of large numbers 6 A. Spectral radius, isoperimetric inequalities and growth 6 B. Law of large numbers 9 ...
متن کاملIsoperimetric inequalities for minimal graphs
Based on Markvorsen and Palmer work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal graphs in N × R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form. Mathematics Subject Classification: (2000): Primary 53C42; Secondary 53A10
متن کاملCuts in Cartesian Products of Graphs
The k-fold Cartesian product of a graph G is defined as a graph on tuples (x1, . . . , xk) where two tuples are connected if they form an edge in one of the positions and are equal in the rest. Starting with G as a single edge gives G as a k-dimensional hypercube. We study the distributions of edges crossed by a cut in G across the copies of G in different positions. This is a generalization of...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 7 شماره
صفحات -
تاریخ انتشار 1998